441 research outputs found

    The Impact of Biculturalism on Language and Literacy Development: Teaching Chinese English Language Learners

    Get PDF
    According to the 2000 United States Census, Americans age five and older who speak a language other than English at home grew 47 percent over the preceding decade. This group accounts for slightly less than one in five Americans (17.9%). Among the minority languages spoken in the United States, Asian-language speakers, including Chinese and other Asian and Pacific Islander languages, have increased by more than 75 percent. Futher, the proportion of Asian language speakers having difficulty speaking English has almost doubled (Klein, Bugarin, Beitranena, & McArthur, 2004). Today, Chinese students are one of the largest groups of English Language Learners (ELLs) in the U.S. Children of Chinese immigrants to the U. S. face linguistic, cultural, and academic challenges. For teachers to be adequately prepared to design and implement instruction for Chinese ELLs, they must have an understanding of this population, the language differences between Chinese and English, and the most effective strategies for scaffolding language and literacy success. This article highlights two Chinese second-graders and their unique educational needs in order to provide insight and implications for instructing Chinese ELLs

    Surface induced selective delamination of amphiphilic ABA block copolymer thin films

    Get PDF
    This is the result of an ongoing collaboration with Dr. N. Sommerdijk’s Biomaterials group at the University of Eindhoven (the Netherlands) and illustrates the close collaboration that exists in pursuing the design and application of novel polymeric materials between the two groups. This details work on a physical phenomenon (selective delamination) and key materials (amphiphilic block copolymers) that have subsequently been applied in the design of novel biomaterials. These results have appeared in a larger body of work including Advanced Materials, Angewandtie Chemie International Edition and the Journal of Materials Chemistry

    Reading Comprehension, Figurative Language Instruction, and the Turkish English Language Learner

    Get PDF
    According to the 2000 U.S. Census, the Turkish-speaking population in the United States increased significantly in the 1990s and has risen steadily over time. Today, the highest concentration is located in the states of New York, California, New Jersey, and Florida. Kaya (2003) reported a geographical dispersion across the U.S., from New York to Alaska, with the wealthiest living in Florida. Turkish students make up the ninth largest student population in the U.S. and the largest percentage of students compared to their homeland population. This article identifies and explores many of these challenges by observing the transition of Hakan, a Turkish-speaking fifth grade student, as he encounters a new culture and learns a new language. In particular, we focus on the acquisition of figurative language in a Turkish-speaking English Language Learner (ELL). Some issues and questions addressed in the article include effective methodologies for the assessment of figurative language acquisition in the Turkish and English languages, effective instructional strategies to scaffold Turkish-speaking English Language Learners’ (ELLs) acquisition of figurative language, and linguistic factors that might affect Turkish-speaking students’ transition to English. The article sets forth theoretical underpinnings for the chosen assessment and instructional strategies, as well as a summary of supporting research in the area of Turkish-speaking ELLs

    Increasing crop production in Russia and Ukraine—regional and global impacts from intensification and recultivation

    Get PDF
    Russia and Ukraine are countries with relatively large untapped agricultural potentials, both in terms of abandoned agricultural land and substantial yield gaps. Here we present a comprehensive assessment of Russian and Ukrainian crop production potentials and we analyze possible impacts of their future utilization, on a regional as well as global scale. To this end, the total amount of available abandoned land and potential yields in Russia and Ukraine are estimated and explicitly implemented in an economic agricultural sector model. We find that cereal (barley, corn, and wheat) production in Russia and Ukraine could increase by up to 64% in 2030 to 267 million tons, compared to a baseline scenario. Oilseeds (rapeseed, soybean, and sunflower) production could increase by 84% to 50 million tons, respectively. In comparison to the baseline, common net exports of Ukraine and Russia could increase by up to 86.3 million tons of cereals and 18.9 million tons of oilseeds in 2030, representing 4% and 3.6% of the global production of these crops, respectively. Furthermore, we find that production potentials due to intensification are ten times larger than potentials due to recultivation of abandoned land. Consequently, we also find stronger impacts from intensification at the global scale. A utilization of crop production potentials in Russia and Ukraine could globally save up to 21 million hectares of cropland and reduce average global crop prices by more than 3%

    Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time

    Get PDF
    Projections based on invariant genotypes and agronomic practices indicate that climate change will largely decrease crop yields. The comparatively few studies considering farmers’ adaptation result in a diversity of impacts depending on their assumptions. We combined experiments and process-based modeling for analyzing the consequences of climate change on European maize yields if farmers made the best use of the current genetic variability of cycle duration, based on practices they currently use. We first showed that the genetic variability of maize flowering time is sufficient for identifying a cycle duration that maximizes yield in a range of European climatic conditions. This was observed in six field experiments with a panel of 121 accessions and extended to 59 European sites over 36 years with a crop model. The assumption that farmers use optimal cycle duration and sowing date was supported by comparison with historical data. Simulations were then carried out for 2050 with 3 million combinations of crop cycle durations, climate scenarios, management practices, and modeling hypotheses. Simulated grain production over Europe in 2050 was stable (−1 to +1%) compared with the 1975–2010 baseline period under the hypotheses of unchanged cycle duration, whereas it was increased (+4–7%) when crop cycle duration and sowing dates were optimized in each local environment. The combined effects of climate change and farmer adaptation reduced the yield gradient between south and north of Europe and increased European maize production if farmers continued to make the best use of the genetic variability of crop cycle duration

    Spatially Explicit Data: Stewardship and Ethical Challenges in Science

    Get PDF
    Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration

    Increasing future human-induced nitrogen exports to rivers and sea in the Zambezi river basin

    Get PDF
    In the past decades, nutrient enrichment in African water bodies has been frequently reported and lead to water security challenges, such as unsafe drinking water and compromised local livelihood. Meanwhile, rapid population growth and land-use change towards intensified food production are projected in Africa. Substantial increases in anthropogenic nutrient inputs (e.g. human waste and fertilizer) to the terrestrial and aquatic environments are therefore expected. This may further deteriorate African water bodies and threaten water security. As part of the Integrated Solution for Water, Land and Energy (IS-WEL) project funded by Global Environmental Facility and IIASA, this study aims to assess the status and projected changes of nitrogen (N) sources, associated inputs to rivers and export to sea. The study focuses on the Zambezi river basin, the 4th largest transboundary basin in Africa draining through 8 countries. N inputs to rivers and export to sea are estimated using the MARINA model (Model to Assess River Inputs of Nutrients to seAs) under current conditions and future climate, land use and socio-economic scenarios towards 2050. In addition to global climate (Representative Concentration Pathways) and socioeconomic (Shared Socioeconomic Pathways) scenarios, the study co-developed regional scenarios through stakeholder engagement in cooperation with the Zambezi Watercourse Commission. The regional scenarios, especially for sanitation and agricultural development, will later be incorporated in the model. Preliminary results show that for the current period (2010), N input to rivers and export to sea are mainly from natural sources, namely N fixation by the natural ecosystems and organic N leaching from non-agricultural areas. By 2050, N sources in the basin will be more than doubled due to anthropogenic inputs based on the global scenarios. Consequently, the fraction of human-induced N export is projected to increase considerably. Additionally, N export to sea is strongly influenced by the intra- and inter-annual climate variabilities in the region. The study highlights the need to simultaneously consider source control and climate adaptation in the regional contexts to minimize further N-induced deterioration of water bodies and ensure regional water security

    The Differential Expression of Cide Family Members is Associated with Nafld Progression from Steatosis to Steatohepatitis.

    Get PDF
    Improved understanding of the molecular mechanisms responsible for the progression from a "non-pathogenic" steatotic state to Non-Alcoholic Steatohepatitis is an important clinical requirement. The cell death-inducing DFF45 like effector (CIDE) family members (A, B and FSP27) regulate hepatic lipid homeostasis by controlling lipid droplet growth and/or VLDL production. However, CIDE proteins, particularly FSP27, have a dual role in that they also regulate cell death. We here report that the hepatic expression of CIDEA and FSP27 (α/β) was similarly upregulated in a dietary mouse model of obesity-mediated hepatic steatosis. In contrast, CIDEA expression decreased, but FSP27-β expression strongly increased in a dietary mouse model of steatohepatitis. The inverse expression pattern of CIDEA and FSP27β was amplified with the increasing severity of the liver inflammation and injury. In obese patients, the hepatic CIDEC2 (human homologue of mouse FSP27β) expression strongly correlated with the NAFLD activity score and liver injury. The hepatic expression of CIDEA tended to increase with obesity, but decreased with NAFLD severity. In hepatic cell lines, the downregulation of FSP27β resulted in the fractionation of lipid droplets, whereas its overexpression decreased the expression of the anti-apoptotic BCL2 marker. This, in turn, sensitized cells to apoptosis in response to TNF α and saturated fatty acid. Considered together, our animal, human and in vitro studies indicate that differential expression of FSP27β/CIDEC2 and CIDEA is related to NAFLD progression and liver injury

    Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types

    Get PDF
    Hypoxia plays an important role in the resistance of tumour cells to chemotherapy. However, the exact mechanisms underlying this process are not well understood. Moreover, according to the cell lines, hypoxia differently influences cell death. The study of the effects of hypoxia on the apoptosis induced by 5 chemotherapeutic drugs in 7 cancer cell types showed that hypoxia generally inhibited the drug-induced apoptosis. In most cases, the effect of hypoxia was the same for all the drugs in one cell type. The expression profile of 93 genes involved in apoptosis as well as the protein level of BCL-2 family proteins were then investigated. In HepG2 cells that are strongly protected against cell death by hypoxia, hypoxia decreased the abundance of nearly all the pro-apoptotic BCL-2 family proteins while none of them are decreased in A549 cells that are not protected against cell death by hypoxia. In HepG2 cells, hypoxia decreased NOXA and BAD abundance and modified the electrophoretic mobility of BIM(EL). BIM and NOXA are important mediators of etoposide-induced cell death in HepG2 cells and the hypoxia-induced modification of these proteins abundance or post-translational modifications partly account for chemoresistance. Finally, the modulation of the abundance and/or of the post-translational modifications of most proteins of the BCL-2 family by hypoxia involves p53-dependent and -independent pathways and is cell type-dependent. A better understanding of these cell-to-cell variations is crucial in order to overcome hypoxia-induced resistance and to ameliorate cancer therapy
    corecore